Dimensions of three types of BCH codes over GF(q)

نویسندگان

  • Hao Liu
  • Cunsheng Ding
  • Chengju Li
چکیده

BCH codes have been studied for over fifty years and widely employed in consumer devices, communication systems, and data storage systems. However, the dimension of BCH codes is settled only for a very small number of cases. In this paper, we study the dimensions of BCH codes over finite fields with three types of lengths n, namely n = qm − 1, n = (qm − 1)/(q− 1) and n = qm +1. For narrow-sense primitive BCH codes with designed distance δ, we investigate their dimensions for δ in the range 1 ≤ δ ≤ q⌈2 ⌉+1. For non-narrow sense primitive BCH codes, we provide two general formulas on their dimensions and give the dimensions explicitly in some cases. Furthermore, we settle the minimum distances of some primitive BCH codes. We also explore the dimensions of the BCH codes of lengths n = (qm − 1)/(q− 1) and n = qm + 1 over finite fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New multilevel codes over GF(q)

In this paper, we apply set partitioning to multi-dimensional signal spaces over GF(q), particularly GFq-l(q) and GFq(q), and show how to construct both multi-level block codes and multi-level trellis codes over GF(q). We present two classes of multi-level (n, k, d) block codes over GF(q) with block length n, number of information symbols k, and minimum ,1-1 • { d } distance d_n >_ d, where n =...

متن کامل

Narrow-Sense BCH Codes over $\gf(q)$ with Length $n=\frac{q^m-1}{q-1}$

Cyclic codes over finite fields are widely employed in communication systems, storage devices and consumer electronics, as they have efficient encoding and decoding algorithms. BCH codes, as a special subclass of cyclic codes, are in most cases among the best cyclic codes. A subclass of good BCH codes are the narrow-sense BCH codes over GF(q) with length n = (qm−1)/(q−1). Little is known about ...

متن کامل

Optimal Linear Codes Over GF(7) and GF(11) with Dimension 3

Let $n_q(k,d)$ denote the smallest value of $n$ for which there exists a linear $[n,k,d]$-code over the Galois field $GF(q)$. An $[n,k,d]$-code whose length is equal to $n_q(k,d)$ is called {em optimal}. In this paper we present some matrix generators for the family of optimal $[n,3,d]$ codes over $GF(7)$ and $GF(11)$. Most of our given codes in $GF(7)$ are non-isomorphic with the codes pre...

متن کامل

Another Generalization of the Reed-Muller Codes

The punctured binary Reed-Muller code is cyclic and was generalized into the punctured generalized ReedMuller code over GF(q) in the literature. The major objective of this paper is to present another generalization of the punctured binary Reed-Muller code. Another objective is to construct a family of reversible cyclic codes that are related to the newly generalized Reed-Muller codes. Index Te...

متن کامل

Syndrome Encoding and Decoding of BCH Codes in Sublinear Time Excerpted from Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data

We show that the standard decoding algorithm for BCH codes can be modified to run in time polynomial in the length of the syndrome. This works for BCH codes over any field GF (q), which include Hamming codes in the binary case and Reed-Solomon for the case n = q − 1. BCH codes are handled in detail in many textbooks (e.g., [vL92]); our presentation here is quite terse. For simplicity, we only d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 340  شماره 

صفحات  -

تاریخ انتشار 2017